Mentoring and Outreach

Laboratory of Geometry

The Laboratory of geometry (LOG) is a program aimed at groups of motivated undergraduate students. They work together under the guidance of mentors to understand a mathematical concept deeply enough so that they can tell a computer to produce meaningful pictures. Then they use these pictures to get further insights and conjectures.  Mentors can consist of graduate students or faculty members. 

I am the co-founder of Laboratory of Geometry at IU. Here is the website:

https://sites.google.com/view/laboratory-of-geometry-iub

Current projects

I am not organizing any Geometry Lab currently, but I am mentoring undergraduates on a Geometry Lab-like project. The project we are working on is "Counting geodesics in the once-punctured torus". Feel free to contact me if you are an undergraduate interested in research experiences.

Past projects

At UC Davis, I mentored undergraduates on the following projects:

In the past, I've co-mentored the following two LOG projects at Indiana University:

Laboratory of Geometry at IU: Volume of knot complements, main organizer of the program and co-mentor of students: Arthur Hertz and Robert Iannuzzo.

Abstract: The students learned about hyperbolic geometry, geodesics, unit tangent bundle of surfaces, canonical lifts, and volumes of 3-manifolds. Then they studied the unit tangent bundle of the once punctured torus, canonical lifts of pairs of simple geodesics and did some computations of volume triangulating the complement of the canonical lifts and using Snappy. See a problem list here and their final slides here

Laboratory of Geometry at IU: 3-D printing fiber bundles, co-founder of the program and co-mentor of students: Jeffery Coulter, Tristan Britt and Phuong Dong Le, Spring 2019.

Abstract: We study concrete examples of fiber bundles, such as mapping tori of the torus, or the Hopf fibration. Then, we set on producing some computer code that allows us to explore the Hopf fibration via 3d-imagery. Finally, we produced a 3d model of the Hopf fibration. See a problem list here and the final slides here.

In the past, I've co-mentored the following two LOG projects at University of Michigan (https://sites.lsa.umich.edu/logm/):

Research Experience for Undergraduates

In Summer 2019 I co-mentored the student Max Newman on a REU project on extremal length of non-simple closed curves, with Dylan Thurston as the principal faculty. Max studied families of non-simple closed curves on the thrice punctured sphere whose extremal metric is realized by the flat metric. These show up when looking at regular tessellations of the plane. Further, he implemented a computer algorithm by Zwiebach and Haedrick to compute extremal lengths via convex optimization and used it to perform an experimental study of the extremal length of the torus with one hexagonal boundary component. 

Directed Reading Program

 The Indiana University Math Directed Reading Program math majors the opportunity to learn advanced math topics. Participants spend a semester on an independent math project under the supervision of a graduate student mentor. More info: http://www.indiana.edu/~mathdrp/

In the past, I have mentored one DRP project:

Outreach 

The Set game: exploring combinatorics, probability and geometry, RISE STEM summer scholar program, Summer 2017 and Summer 2019. See slides.

A topological game, McCormick Creek's Elementary Math/Science night volunteer (IUB) Spring 2017

Volunteer in Mathematical New Games Workshop, Hanabi (see handout), Indiana University Science Fest, (IUB), Fall 2015

Judge in Science Fair - Ivy Tech Community College (IUB), Spring 2015

Volunteer in Mathematical Games Workshop. Indiana University Science Fest, (IUB), Fall 2014

Introduction to Math life at university of Young Mathematicians Award team challenge competition, Nrich activity, Cambridge Millenium Math Project, Michaelmas term 2013

Mathematics Outreach session for children and young people between 5-18 age. Cambridge Maths Circle, Cambridge Millenium Math Project, Michaelmas term 2013